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The Cauchy problem for the b-plane form of the tidal equations is solved for 
both oscillatory and delta function initial data. The radius of deformation is 
assumed to be much less than the radius of the earth, and in accord with this 
assumption a ray approximation is employed. 

It is shown that, owing to the rapid rate of propagation of inertio-gravity 
waves, the motion in its initial development tends towards geostrophic balance. 
However, the solution given by the ray approximation is singular on certain 
surfaces in space and time, the envelopes of the rays. A local boundary-layer 
theory is employed to correct 'this deficiency. The existence of these caustics 
implies that the process of geostr&phic adjust'ment is more complicated than 
hitherto imagined. 

1. Introduction 
One possible explanation for the well-known fact that gravity waves play a 

unimportant role in the large-scale motion of the atmosphere is that these waves, 
because of their high rate of propagation, spread out rapidly from local sources, 
leaving the slower Rossby waves behind. This process is called geostrophic ad- 
justment. In  the standard treatment (Obukhov 1949) a flat earth idealization of 
the tidal equations is solved as an initial value problem, and the motion indeed 
tends towards geostrophic balance as time -+ co. 

Among the defects of this model is the neglect of curvature effects and the 
consequent omission of Rossby waves and of refraction of the gravity waves. 
Accordingly, there is some interest in a treatment in which the effect of the earth's 
curvature is not totally neglected. 

In  this paper we consider the P-plane model and thus allow for the above- 
mentioned omissions of Obukhov's study. A parameter N ,  the ratio of the radius 
of the earth to the radius of deformation, is assumed to be large, and an approxi- 
mate solution is found on this basis. The approximation is similar to the ray 
method used by Keller (1958) for the treatment of diffraction problems, though 
here it is used to solve an initial value problem. 

As in diffraction theory the ray approximation is invalid on envelopes of the 
rays. A local boundary-layer theory is needed to correct this deficiency and is 
supplied in part. Near and on the envelopes the amplitudes of the dependent 
variables are large. This indicates that the process of geostrophic adjustment is 
considerably more complicated than would appear from a study of the flat earth 
model. 
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2. Formulation 
Let h and 0 measure longitude and latitude on an earth of radius R rotating 

about a polar axis with angular velocity SZ, and let g be the gravitational constant. 
It is assumed that SZ2R/g is small so that ellipticity of geopotential surfaces can 
be neglected. We consider here a homogeneous fluid of uniform depth H with a 
free surface, but bear in mind that the theory applies equally well to inhomo- 
geneous fluids provided H is replaced by an appropriate scale height. 

Let t; be the surface elevation, u and v velocity components to the east and 
north, and let x and y be Mercator co-ordinates defined by 

We ignore the tide-generating forces. Then, in accord with the usual approxima- 
tions of tidal theory (Lamb 1932, chapter 8), the equations of motion are 

au gm at; --2SZfv+-- = 0, 
at R ax 

av gm ac - + 2 Q f u + - -  = 0,  
at R aY 

% + e m 2  - 
at R [ a  ax 

( 3 )  

(4) 

where f = sin0 = tanhy, m = sec0 = coshy. (5) 

In  the P-plane approximation used here we replace m by unity and f by y. 
Introducing this approximation, scaling the variables through 

where h is a characteristic amplitude of the surface elevation, letting 

N = 2SZR/(gH)*, (7) 

and omitting the asterisks, we obtain 

and 

au at; --Nyv+- = 0, 
at ax 

av at; -+NYu+- = 0, 
at aY 
at; au av 
at ax ay 
-+-+- = 0. 

(9) 

These are to be solvedsubject to initial conditions and to the requirements that 
the dependent variables be bounded a t  I yI = co and periodic in x with period 2n. 
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It proves convenient to cast the problem in terms of v alone. Elimination of 
between (8) and (10) and between (9) and (10) and of u between the resulting 
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Similarly, the initial data become 

(12) 
v = B, V ,  = -Ny.ii-cV, 

vft = IVY([' - NyB) + .iiw + BVV, 
where a tilde over a variable denotes its value at t = 0. 

solution. Later, in $5 ,  we shall consider the initial data 
We will suppose that N is large and exploit this in seeking an asymptotic 

. i i = B = O ,  c = - xo) S(Y - Yo).  ( 1 3 )  

.ii = B = 0, [ = A($, y)exp{iNkz}, (14 )  

Here, however, we treat the case 

where k is a constant of order unity and where 

A(x+2n, y )  = exp{2niNk}A(tc7 y )  

in agreement with the sentence following (10). This initial disturbance is in the 
form of a wave with variable amplitude and whose wavelength is short compared 
with the radius of the earth. 

3. The ray approximation 
We assume that the asymptotic expansion of v is of the form 

= W R ( ~ ,  Y ,  7, N )  exp { iN$R(z,  Y, TI} + w+(x, Y ,  t ,  N )  exp {iN$+(z,  y ,  t ) }  
+ w - ( x , y , t , N ) e x p ( i N ~ _ ( z ,  y , t ) } ,  (15) 

where 7 = N-lt ,  (16) 

where the first term of the sum is to satisfy 

a a 3  N2V2 - - - + N4 ( a7 a73  ax wR exp {iN&} = 0 

and where each of the last two terms satisfies 

at 
a a 3  a 

( at at3 ax 
v2 - ---+ N -  - w+ exp{iN$,} = 0. 

(17) 

The motivation for this assumption is due in equal measure to known facts about 
long wave motions in the atmosphere and oceans and to what is now classical 
singular perturbation theory. 

We note first that there are two classes of long waves which are often observed 
in geophysical contexts, the inertio-gravity and the Rossby waves. In  ele- 
mentary treatments their dispersion relations are derived by assuming that the 
Coriolis parameter may be taken to be constant once a scalar equation for a single 
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unknown has been obtained. In  the present case this amounts to taking y to be 
constant in (1 l), whence the equation admits plane wave solutions of the form 

where 

v = exp { iN(px + qy - wt)}, 

w3 - (p2+ q2 + y2) 0 - N-1p = 0. 

With a fractional error of order N-1 the cubic has approximate solutions 

the dispersion relation for Rossby waves, and 

w = & (p2+q2+y2)3, 

the dispersion relation for inertio-gravity waves. 
This calculation implies that v should be written as 

v = v1/R(X,Y,7 ,N)+v+(X,Y, t ,N)+v-(X,  y , t , N ) ,  
where the notation is obvious. Now the location of the large parameter N in ( 1  1) 
or in the amended form of ( 1  1) with T as time variable indicates that this is a 
singular perturbation problem, with either the time or the spatial derivatives 
of v large, of order N .  Hence we are led naturally to assuming the asymptotic 
expansion of v to be of the form 

v* = v*@, Y, t ,  N$*(x, Y, t), N ) ,  ( 1 9 4  

vR = Y, 7, N$R(X,  Y, 7), N ) ,  (19b) 

where q5* and $R are additional unknowns. This prescription is due to Mahony 
(1962) and is designed to ensure that the asymptotic expansion be uniformly 
valid in space and time. 

The next step would be to substitute (19a) into (1  1)  and (19b) into the amended 
form of (1 l ) ,  and to solve by expanding v+ and vR in a perturbation series in 
powers of N-1. It is reasonably obvious that, if this procedure is carried out, the 
lowest-order equation for either v in (19) involves derivatives only with respect 
to N$ and is translationally invariant with respect to this variable. Mahony’s 
advice is to pick q5 so that, if the solution involves a function of NF[$] ,  where 
F is a functional of q5, P is a constant. 

These last two sentences lead immediately to equation (15), and we point out 
that assuming this form of solution is the first step in the geometrical optics 
approach to wave propagation problems. 

In  both (17) and (18) we impose the condition that the coefficient of the highest 
power of N be equated to zero. This leads to 

4; + q5; + Y2’  
$7 = 

which is obeyed by q51/R, and 
- q5t = k (q5; + q5; + Y 2 P ,  

which is obeyed by $*. These will be referred to as dispersion relations but, in 
contrast to the case of wave propagation in a constant medium, the phase is not 
a linear function of its arguments. 
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To satisfy the initial conditions we require that 

$R = $+ = 6- = kx. 
It can then be shown that 

1 ($*It = k (kZ+y2)4 

($*),, = kY(k2+Y2)-4 

at t = 0, and these equations, together with (12) and (14)) imply that at:t = 0 

wR+w++w- = 0, (24) 

(25) N-'(wR)T + i($R)TwR + (w+ + w - 1 1 ~  - A g ,  

and N - 2 ( W R ) ~ ~  + i N - 1 [ 2 ( $ R ) T  ( w R ) ~  + ($R)TT - ($R): wR 

+ (w++w-),,+i"2(k2+ y2)"w--wW+)t+ y(k2+ y2)-4 (w--w+)] 

- N2(k2+y2)  (w+ + W-) = y(iN2kA +NA,). (26) 

Thus far no approximations have been made. Now, however, we expand each 
w in an ordinary perturbation series of the form 

(27) w = w(0) + N-lwCl) + N-2w(2) + . . . ) 
and substitute into (17), (18) and the initial conditions. It follows that d&) obeys 

(4: + $; + y2) wT + ('$X$T- '1 wZ+ ' $UdTwU+ [$Tv2$ + "$ "$71 = ' 9  (28) 

where $ is $R, and that both of wg) satisfy 

2(V$ - v w  - 4twJ + (V2$ - A t  - i$x/$t)w = 0, (29) 

where $ is $*. These will be referred to as the transport equations. Substitution 
of (27) into the initial conditions yields 

whence 

We consider first the Rossby mode, and as before omit subscripts and super- 
scripts whenever possible. Our first task is to solve the dispersion relation (20). 

(32) 
To this end, let 

so that Cr(p2+fp+y2)-2) = 0. (33) 

p =  $X> q =  $Y? a= $7, 

The associated characteristic system of differential equations is (Courant & 
Hilbert 1962, chapter 2) 

(34) 

xu = zpa- 1, y, = 2qg, 

7, = p2+q2+ y2, p, = 0, 
qv = - 2ay) av = 0) $hU = 2a(p2+q2), 
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where v is a parameter. Solving (34) subject to 

x = h ,  y = p ,  r = o ,  p = k ,  

$6 = kx, q = o ,  cr=- 
k2 + y2’ 

k (35) 

at v = 0, where A and p are also parameters, we obtain the solution of (20) in 

We designate the family of curves generated by assigning constant values of h 
and p in (3671) as rays. These are not orthogonal to surfaces of constant phase; 
instead, as may be verified, they are everywhere tangent to the local vector group 
velocity of the waves. 

4 

FIGURE 1. Ray paths in (2, y)-plane for Rossby mode, with arrow denoting direction of 
group velocity. (a)  /,I, = 1.2, k = 1, ( b )  ,/A = 1, Ic = 1, (c )  p = 0.8, k = 1. 

We turn now to the problem of solving the transport equation (28). Now from 
a a a a 

a v  ax ay a7 
- xv-- + yv- +7,- _ -  (34L 

so (28) is actually an ordinary differential equation, the differentiation in (37) 
being 4; + $6; + y2 times differentiation following points which move with the 
group velocity. Furthermore, letting 
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be the Jacobian of the transformation (36b) ,  we find after a short calculation 
that 

( J R ~  = ~JRL$%V~$ + 2v$' -v$k17 (39)  

so that (28 )  becomes 2&WV+ (JR),,w = 0 (40 )  

with solution = G(A7p) [JR(A>p)/JR]'* (41 )  

Evaluating the Jacobian and using ( 3 1 a ) ,  we obtain 

and the first term in the ray solution for the Rossby mode is 

~ g '  = w$'exp{iN$R}. 

Since the treatment of the + and - gravity modes is identical, we exhibit the 
calculations only for the former. To solve the dispersion relation, let 

P = $x7 P = w = - - A 7  

and we write the dispersion relation as 

(43 )  

+(p'2+q2+y2-w2) = 0.  (44 )  

The characteristic system of differential equations is 

I xs = P, , Y S  = 4,  t s  = 0, Ps = 0, 

q s =  - Y ,  U s =  0, A =  -Y2 ,  

where s is a parameter, and these are to be solved subject to 

(45) 

( 4 6 )  I x = E ,  y = r ,  t = O ,  p = k ,  

q = 0, w = (kZ+y2)4, $ = kx, 

q5 = ++ = k[-+y%-$r2sin2s ( 4 7 4  

where 2 = [ + ks, y = cos s, t = (k2+ T / 2 ) t ,  (47b) 

at s = 0, where 6 and 7 are also parameters. The solution is 

and as before the rays, generated by assigning constant values to 6 and 7 in 
(47b) ,  are everywhere tangent to the group velocity. 

Since 

the transport equation (29) is an ordinary differential equation. Also, letting 

be the Jacobian of the transformation ( 4 7 b ) ,  we find that 

(J+h = J+(V24 - h), 

2J+ W, + [(J,), + iJ+k(k2 + 72)-4] w = 0 

(50) 

(51 )  
so that (29 )  becomes 
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with solution 

Evaluating the Jacobian and using (31 b) ,  we obtain 
w = @(E, 7) [J+(E, r)/J+]* exp{ - &k(k2 + v2)-b}.  (52) 

and 

The solution for v!!? is obtained by changing (k2 + q2)* 
formulae. 

w$!J = w$') exp {iiV$+}. 

t 

(53) 
to - (k2+r2)* in the above 

FIQURE 2. Ray paths in (2, y)-plane for + gravity mode. (a )  7 = 1.2, k = 1;  
(b )  ?/ = 0.8, k = 1. 

The parametric solutions given above are complicated and merit some dis- 
cussion. Before undertaking this, we give the solutions for u and c. For the Rossby 
mode, let the column vector (uR, vR, cR) be written in the form 

<uR, 'R ,  cR> = @R exp {iN$R), (54) 
where $R is another column vector. Substituting (54) into (8), (9) and (lo), and 
recalling the definition of 7, we find that 

where $ is $R. The matrix is rank 2 and one can solve for the first and third com- 
ponents of $$) in terms of the second. This yields 
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Similarly, for the gravity waves, we let 

(U*,Vf,C*:) = $*""P{iNq5*), 
and obtain 

where q5 is $*. By virtue of the dispersion relation (21), the matrix in (58) is 
singular and of rank 2, and u$" and C$') are found to be given by 

We now turn our attention to the behaviour of the solution in the initial stage 
of the motion. Now for small 7, the transformation (36b) becomes 

i Y = P, 
7 = (k2+p2)v, 

with an error of order 72 ,  and the Jacobian becomes k2 + p2, with a similar error. 
Thus for small T 

y2- k2 

Similarly, (47 b )  becomes 
x = $+ ks, 

Y = 7, 
t = ( k 2 + ? 2 ) h ,  

the Jacobian is (k2 + y2)*, and 

t +O(t2). (63) I) ~ ( k x ~ ( k 2 + y 2 ) J t ) - - -  
2 k2+ y2 

Equations (61) and (63) state that the energy of each mode travels with the 
group velocity of that mode. Since the group velocity of the gravity modes is 
much greater than that of the Rossby mode, the former disperse more rapidly 
from local sources. 

This much could have been anticipated, especially in view of recent work on 
the concept of group velocity (cf. Landau & Lifshitz 1959, $66). What is surprising 
is the formation of envelopes of the rays on which the amplitude of the dependent 
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variables is infinite, at least according to the ray approximation. Consider, for 
example, the solution 

w = fi(& 7) [J+(& q)/J+]i exp{ - Q W k 2  + v2)-4s), (52)  
$ = kc - +V'S - &12 sin 2s, ( 4 7 4  

where x = E+ks, y = ~ C O S S ,  t = (k2+q2) is  (47 b)  

for the + gravity mode. The Jacobian, given by 

J+ = [ (k2+q2)  coss+q2ssins]/(k2+q2)*, (64) 

t 
Y - 2 5  

I \ 

2 5  I \ 
FIGURE 3. Caustics in (y, $)-plane for + gravity mode for k = 1. 

vanishes for those values of q and s such that 

k2 cos s 
ssins+coss 

72 = - 

and consequently for the curves described parametrically by 

(66) 
$sins * 

) .  
cos3 s 

cos s + s sin s ' 
9 2  = - k2 t 2  = k(  

s sins + cos s 

On these curves, shown in figure 3, the ray solution for vy) is infinite. Also, the 
curves are envelopes of the rays, or caustics, and we must anticipate that at  least 
in their neighbourhood the transformation is not one-one. Actually, the situation 
is far worse. 

Consider first the cusps of the caustics, y = 0, t = k ( j -  b)n, where j is any 
positive integer. The pre-images are found by solving 

0 = ~ C O S S ,  k ( j - + ) n  = (k2+q2)*s. (67) 



An asymptotic solution of the tidal equations 

One solution is 7 = 0, s = (j  - i) n-. The others are 

( j  - $)2 - (m - $)2 
5 = (m - &)m, 7 2  = k2 

(m-*)2 ' 

427 

where m is any integer which is less than j. Consequently, the first cusp has one 
pre-image, the second three pre-images, the third five pre-images, and so forth. 

t 

FIGURE 4. Pre-image of curve y = 1 for k = 1. (a) Branches of y = 1, (b) first caustic. 

For considering ordinary points on the caustics and points off the caustics it is 
useful to plot surfaces of constant y in the (7, s)-plane. Using (47b) and the derived 
relation 

we find that every ordinary point on the j t h  caustic has 2j  pre-images, while 
every point between the j t h  and (j+ 1)th caustic has (2j+ 1) pre-images. The 
only region for which the transformation is oneone is for those values of t 
between zero and the first caustic. Elsewhere the solutions are either multi- 
valued or inbi te .  

A similar analysis can be made for the other gravity mode and for the Rossby 
mode, and similar results are obtained, Consequently, further discussion is 
necessary. This is supplied in part in the next section and in appendix A. 

4. Asymptotic solutions near the caustics 
The remarks in appendix A indicate that in a region in which solutions are 

multi-valued the correct solution is obtained by adding the different values, Thus, 
for example, at any point between the j th  and (j + 1)th caustic for the gravity 
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mode the ray solution has (2j + 1) values corresponding to 2j + 1 pre-image points. 
The correct solution is obtained by summing over all the pre-image points. 

In  order to carry out this procedure one must assign the correct branch to the 
square root of J / J .  This is known as finding a phase shift rule. Both the phase 
shift rule and the correct asymptotic expansion near caustics are obtained by 
making a local boundary-layer theory. This theory is supplied here, in part, for 
the gravity modes. 

Consider the equation 

which is obtained by eliminating 7 between the last two equations of (47 b).  Let 
overbars denote values on a caustic, and let 

t = Z+a, y = y+b ,  s = g + g ,  7 = 7+p,  (71) 

where a, b, v andp are small. We note from (69) that = 0. Consequently, Fg is 
the slope of the caustic in a (y, t)-plane, and x = a - Fy b measures distance from 
the caustic. 

Now from (70) and (71), 

a = TVb + +(Esv2 + 2Eggb + FVgb2) + .. . (72) 

and with the aid of Newton’s diagram we find that (72), considered as an equation 
for g, has two solutions which tend to zero as a and b -+ 0. The lowest-order ap- 
proximation for these is 

c r = k = ,  (73a) [3 
and we similarly find that the corresponding values of p are given by 

p = (7tanS)a. (73b) 

zs = (J+),/cos3 

Consider the first caustic. Since 

is positive and z is positive for t > f and negative for t < l, we see that there are 
real solutions for CT and p for values of y and t on only one side of the caustic. 
In  terms of rays, shown in figure 5, this means that through a point I? near the 
caustic in region A there pass two rays which touch the caustic and which co- 
alesce if the point is on the caustic. There is also a ‘non-singular’ ray through I? 
which does not touch the caustic in the neighbourhood of I’ and which need not 
concern us. 

Our starting-point in the boundary-layer analysis is equation (18), which, 
when the dispersion relation is taken into account, becomes 

(& ;n.$6) {iN[2(v#.Vw-$6w6)+ (vz$-$tl)W1 

+ (V2W - w,)} + NW, + iNZ#, w = 0. (74) 

This equation was solved in 5 3 by expanding w in a perturbation series in powers 
of N-l  under the assumption that all derivatives are O( 1). This assumption is not 
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valid near the caustic; instead we assume that the derivative in the direction 
normal to the caustic is much larger than the tangential derivatives. 

The ensuing analysis is straightforward but very tedious, and we give only the 
results. Let 

(75) z = N q u - F p )  = Ntz ,  

Q = k (2/qS)4, (76) 

and 6 = 2Q(k2 + T2)4/S. (77) 

Y I 0 
0 

1 

FIGURE 5. Ray paths near a caustic. (1) and (2) are rays which touch the caustic (c), and 
NS is a non-singular ray. 

It is found after a standard boundary-layer scaling and much algebra that the 
boundary-layer version of (74) is 

W,,+iS 

and that near the caustic 
ivg5 = P + gszQ, (79) 

where P is a linear function of x, y and t. The solutions for w and g5 corresponding 
to  the positive value of Q are associated with a ray which has already touched the 
caustic, while the negative value of Q denotes a ray which has not yet touched the 
caustic. Letting subscript 1 label the former case and subscript 2 the latter, we 
find, upon solving (78), that 

w1,2 = exp(-;iSZg] {A,,,Ai[- (glS(),Z]+Bl,,Bi[-(~]6()82]), (80) 

where Al, and Bl, are independent of Z and where the standard notation for 
the Airy functions is used. 

Now from (64) and (73), we find that near the caustic (J+)l, is given by 

(J+A - 2 7  V+), + z ,  

w2 = Xz-&, 

as z + 0, with the same proportionality constant. Therefore w2 as given by the 
ray approximation is given by 
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as z -+ 0, where S is independent of z,  and we pick A ,  and B, so that w, as given by 
(80) matches this as 2 --f + 00. Also, we require that 

w = exp {iN$,} w, + exp {iN$,} w, 
+ 0 and 2 -+ - 00, since there are no singular rays through points on that side of 
the caustic with z < 0. This determines A ,  and B, and hence the solution, which 

(81  a )  
is w, = - C exp { - QiSZS} (Bi (p) + i Ai (p)], 

(81  b )  w, = C exp { - &SZ*} {Bi (a)  + i Ai (a)} ,  
where (I is the argument of the Airy functions in (80)  and where 

This calculation serves two purposes. First, it  shows that near the caustic the 
amplitudes are large, of order NQ.  Secondly, since in the limit 2+00 (8 la)  
becomes 

it provides a phase shift rule, namely that the correct branch of J$ when J+ < 0 
is e-iinl J+I4. A similar calculation for the - gravity mode gives instead a phase 
shift of + ?pr, but otherwise the results are identical. 

This analysis is incomplete in that it applies only to ordinary points on the 
caustic. It is conjectured that near the cusps, which lie on the equator, the ampli- 
tude is even larger. However, no treatment of this case has been made. Also, 
the corresponding analysis for the Rossby mode has not been developed, although 
at  least for the ordinary points of the caustics the treatment is probabIy not 
difficult. 

5. The case of delta function initial data 
In this section we consider the problem defined by ( 11)  and the initial conditions 

(13) 
- -  
u = 2) = 0, g=  S(x-xo)S(y-yo), 

which serves to complement the problem treated in the preceding sections. As 
before, the ray method will be used. 

The major difficulty encountered here is that initially w does not have the form 
of a wave. In order to treat this case, Lewis (1964) has proposed a heuristic method 
which has been verified for a number of sample problems. We will give a descrip- 
tion of this method which is somewhat different from but equivalent to Lewis’s, 
and at the same time offer a qualitative explanation of why the method works. 

The first step is to solve the ray and transport equations for each mode for 
rays all of which emanate from (zo, yo) at time t = 0. The solution thus obtained 
will be non-unique, since neither the initial value of the phase nor that of the 
amplitude is known. This solution, once the unknown quantities are found, is 
valid except for t so small that the initial disturbance has not yet formed into 
a wave-train. 

Next, we consider the original equation with new scaled variables N ( x  - zo), 
N ( y  - yo), Nt ,  and solve by expanding w in powers of N-l .  The lowest-order equa- 
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tion will have constant coefficients and is equivalent to that obtained by re- 
placing the variable coefficients in the original equation by their values at  
(xo, yo). The solution of the constant coefficient equation is a good approxima- 
tion to the solution of the original equation except for t so large that secular terms 
become important. 

It is hypothesized that there is an overlapping range of validity in which the 
small t form of the ray solution agrees with the solution of the constant coefficient 
problem for moderate or large t. Comparison of the two solutions shows that 
agreement can be achieved by a proper choice of the unknown quantities appear- 
ing in the ray solution. This completes the ray solution, and a uniformly valid 
expression can be obtained as the sum of the ray and constant coefficient solu- 
tions less the form either one of them takes on in the region of overlapping validity. 
The success of this method is apparently due to the fact that for hyperbolic 
equations such as (1  1) the solution depends only on data in a small neighbourhood 
of (xo, yo) if t is small. Hence during the short interval required for a wave-train 
to form the solution is closely approximated by the solution of the constant 
coefficient problem. 

Turning to the present problem, we consider first the case in which t is suffi- 
ciently large for a wave-train to have formed but not so large that the rays have 
appreciably curved. The solution is approximately that of the constant coefficient 
problem, which is treated in appendix A. The results contained therein yield, 
after some algebra, 

where 

(84) 
and sig@ = 2sgna (a2+b2)2 -= y33a2-b2), 

for the Rossby mode, and 
= o  (a2 + by2 > yt(3a2 - bZ), 

where 

for the + gravity mode. The sum in (83) is over all points (a, b)  which are pre- 
images of a point (5, y, 7). 

The Rossby wave solution has been discussed by Longuet-Higgins ( 1 9 6 5 ~ ) .  
The amplitude of the disturbance for this mode is transcendentally small qua 
function of N outside the closed curve 
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the curve itself being a caustic. The gravity waves spread more rapidly, as can 
be shown by solving (A28) to find a and b as functions of x, y and t. Outside the 
circle (z-zo)2+ (y - yo)2 = t2 the gravity wave solutioil is small, and the circle is 
a caustic. At a representative point inside the curve (86) the ratio of v+ to vR is 
that of r to t ,  i.e. the amplitude of the gravity mode is smaller than that of the 
Rossby mode by a factor N-l .  

For larger times we need to take into account the curvature of the rays by 
carrying out the procedure indicated at the start of this section. Turning first 
to the Rossby mode, we find that the rays are given by 

a2 - (b + y;) 
(a2 + b2 + yt)2 2 = ZO+ " 

y = yocos 
2a 2a 

2 r  +bsin ] [(a2 + b2 + yi)2 '1 ' 

Here Qo is unknown, and a and b, which serve as parameters, are the values of 
q5* and Qy at  T = 0. The amplitude which solves the transport equation (28) is 

Now if (87) and (88) are expanded in powers of T ,  it  is seen that these expres- 
sions agree with (A23) and (A25) provided that we take q50 = 0. Then, letting 

we obtain agreement between (83) and the small T form of (90). Hence the ray 
solution for the Rossby mode is given by (91) with wo and q50 as given above. 
Similarly, for the + gravity mode, the ray solution which for small t agrees with 
(85) is 

v+ = w0(a, b ) / w [ 4 e x p { - i ( a t / 2 ( a 2 + b 2 +  a(z, b)  yt))}exp{iN$}, (92) 

where 
N b(a2 + b2 + yt)' - iaY2 egin, 

a2 + b2 + yt wo = 

at 

(a  + b2+ yg)t7 
5 = x,+ -2 

(93) 

(94) 

(95) and 
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It is easy to prove the existence of caustics due to refraction. Consider, for 
example, equation (94) for the rays of the + gravity mode. Eliminating abetween 
the two equations, we obtain 

Y/Yo = cos ( r M 2 +  w + P S b  (W2+ lP), (96) 

where r = [t2-(x-xo)2]qy0, p = b/yo. 197) 

The caustics can be found by finding the values of /3 which solve 

Yg = Yo@ +Pr/(P2+ 1)"in(r/(P2+ 1 ) 9  

- [P2r/(P2 + I ) % ]  cos (r/(P2 + I)&)) = 0 (98) 

and then substituting this value back into (96). One solution is /3 = & 00, which 
corresponds to the circle (x - xo)2 + (y - yo)2 = t2. Another, which is valid when 
r = 2nn, n integral, is P = 0. Hence the point (x,yo) lies on a caustic whenever 

(99) (x - xo)2 = t 2  - 4n27r2y: 

and new caustics appear at  time intervals of 2nrryo. 
We note finally that the solutions given in this section are not periodic in x but 

can be used to construct a periodic solution through addition of the solutions for 
delta functions at  y = yo, x - xo = f 2m7r, rn integral. We will not carry out this 
construction, however. 

6. Discussion 
The work presented here emphasizes how important it is to take account of the 

earth's curvature, since it is the curvature which causes the waves to refract and 
to form envelopes on which the wave amplitude is large. Another effect of the 
curvature is to produce the phenomenon of equatorial trapping, in which the rays 
are always confined in a latitude belt around the equator. Bretherton (1964) 
and Longuet-Higgins (19653) have discussed this effect at length for time- 
periodic waves. 

An important assumption of the present work is that 

N = 2QR/(gH)8, 

the ratio of the radius of the earth to the radius of deformation, is large. The 
commonly accepted scale height of 8km for the atmosphere makes N = 3.3, 
which is not particularly large. However, this scale height applies to only one of 
an infinite number of vertical modes, and for the other modes the scale height is 
smaller and N is larger. The present work is therefore probably qualitatively in- 
accurate for that mode corresponding to a scale height of 8 km, but accurate for 
the smaller scale modes. 

This work was supported by the National Science Foundation under contract 
GP-2561. 
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Appendix A 
This appendix is devoted to solving the model equation 

aV 

at 
av a3v av 
at at3 ax 

v2----+$--N2y2-= 0 

for -co < x < co, -a < y < co, with initial conditions 

v = 0, ~t = - Fu, v!, = NyOFz, (A21 

where F ( x ,  y )  is a known function, yo is constant, and N 3 1. The calculation pro- 
vides information necessary for solving the initial-value problem (11) for non- 
oscillatory initial conditions and in addition serves to resolve certain difficulties 
associated with the ray solution. 

To solve (A 1) we introduce the Fourier transform 

ij = 

The transform of (A 1) is 

and has as its solution 

/Irn v exp {iN(ax + by)}dxdy. 

Gilt + N2(a2 + b2 + yo") v, - iN2aZ = 0 

G = B  I: c,exp{-iNw,t}, 
3 

a = l  

where the wa's and ca7s solve 

~ ~ - ( a 2 + b 2 + y E ) ~ - N - l a  = 0 

and z c ,  = 0, CwacU = b, zwzc ,  = --iaya, 
U a a 

respectively. It is readily verified that the solution of ( A  6) is 

aN-l 
w1 = -a2+bZ+yg + o(1v-3) = gl + 0(~--3), 

+ O(N-2)  
aN-l 

2(a2 + b2 + yt) 
w: = k(a2+b2+yg)i+ 

aN-l 
2(a2 + b2 + yg) EE cr;+ + O(N-2)  

and that, with an error of order N-l, 

c1 = iaya/(a2 + b2 + yg), 
c; = [ -t b(a2 + b2 + yg)* - iay,]/2(a2 + b2+ yg). 

dl = cl, d; = c; exp { - i(at/2(a2 + b2 + yo"))}, Letting 

we obtain the solution of (A 1)  in the form 

v = (~)2~//Bdaexp{iiV(ax+by-~at)}dadb 
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The integrals occurring in (A 11) will now be evaluated through use of Lewis’s 
(1964) result that if 

I = g(tl,. . . , t,) exp { iN$( t l ,  . . . , t,,)}dt,. . .at,, s 
then, as N-+co, 

I N (g)”” XI det @I-)  g exp { i [N$ + &r sig @,I}, 

where the sum is over all points (t l ,  . . . , t,) such that 

@ is the matrix 

a# - = 0, 
at, 

at, at, 
@ = -  a2# 

and sig @ is the sum of the signs of the eigenvalues of @. 
We consider first oscillatory initial data, 

J’ = A(x,  y )  eiNks. 

Then 

where 

and r = N-lt as before. The points of stationary phase satisfy 

k2 - y; 
a = k ,  b = O ,  ~ = t + - -  Y = 7, ( k 2 +  y;)2r’ 

and for these points 
ldet@l = 1, sig@ = 0, # = kx+- k 

k2+ y;“ 

It follows that w1 N dl(k,  O)A(E, 7) exp 

which except for yo in place of y is identical to (61), the small r form of the Rossby 
mode. Similarly, for v2, 

kt 
Y = 7, u = k, b = 0,  x = (+ 

(k2 + y; ) )  
and we obtain 

212 d,(k, r)exP{i[N(kx-(k2+y;))tl}, (A 19) 

which bears the same relation to (62) as (A 17) does to (61). In  addition, it can be 
shown that (A17) and (A19) agree with the solution of ( A l )  obtained through 
use of the ray method. 

For the initial data 

= s(x - ’0)  ‘(y - YO), 

where 
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The sum in the stationary phase formula is over those points (a ,  b )  such that 

a result needed in 95. Similarly, for the + gravity mode, 

where 
at bt 

(a2 + b2 + y;)* ‘ 

x = X,+ Y = YO+ (a2 + b2 + y;)i’ 

We note that, for both types of initial conditions, the asymptotic expansion of 
the solution is of the same form, a ‘wave’ with variable amplitude and rapidly 
varying phase. The solution is parametric, and the relations between the physical 
co-ordinates and the parameters may be thought of as defining curves in space 
and time, the rays. The sum in the stationary phase formula is over those rays 
which pass through a point (x, y, t) .  On envelopes of rays the stationary phase 
result is invalid, and another asymptotic evaluation must be used, that of Chester 
et al. (1957). 

The solution of constant coefficient problems by Fourier analysis and asymp- 
totic integration is useful for interpreting the ray method of solution. Besides 
motivating the form of solution, it indicates that when more than one ray passes 
through a point the solution is the sum of the solutions associated with each ray, 
Furthermore, it indicates that a different type of asymptotic expansion, a local 
boundary-layer theory, is needed to deal with envelopes, and it provides a check 
on the boundary-layer theory. Calculations by Buchal & Keller (1960) and by 
the author do in fact indicate that, when such a check is possible, the boundary- 
layer theory yields the same results as those given by the method of Chester 
et al. 

A great advantage of the ray method is that i t  can be used to solve equations 
with non-constant coefficients provided that the scale over which the coefficients 
vary significantly is much greater than the scale of the dependent variables. An 
alternate procedure is to use the closely related method of multiple scales (cf. 
Carrier 1966). However, the ray method is more systematic and lends itself more 
readily to obtaining higher approximations. 
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Appendix B 
The calculations here have been carried out under the ,&plane approximation, 

and it is natural to inquire what changes in the previous results occur when this 
approximation is not made. The dispersion relations, a t  least, are easily obtained, 
and are similar to those obtained under the P-plane approximation. The method 
used is due to Lax (1957). 

Let u and v be the non-dimensional velocity components, and let 

u = m U ,  v = m P ,  (B 1) 

( 5 )  
and recall that 

Then the non-dimensional equations of motion in Mercator co-ordinates are 

f = sin$ = tanhy, m = see$ = coshy. 

- -Nf  au V + -  ac = 0, 

g + N f O + - = O ,  a< 
at ax 

at aY 

As before, we assume that solutions may be split into a Rossby mode with time 
variable 7 = N-lt  and two gravity modes. For the Rossby mode, let 

where as before the vectors are column vectors, and substitute into (B 2 )  to (B 4). 
This yields 

<& VE cl?> = @R exp {iN$R), 

iA$E + N-lD$R + N-2($R)T = 0, 

(B 5 )  

(B 6) 

and $ is $E. Expanding $R in powers of N-l ,  we obtain 

A$g) = 0,  iA$(#+ D@g) = 0, (B 8 )  

and higher-order equations. 
The matrix A is of rank 2 and has right and left null vectors such that 

ZA = Ar = 0, (B 9) 
where Z is a row vector and r a column vector. These are uniquely determined 
except for a multiplicative constant, and a convenient choice is 

From the first equation in (B 8) $$) is a scalar multiple of r ,  
1 = (m2$g, - m"x, -if ), r = - $x,  if). (B 10) 

(B11) 

obtain lDB$)r = 0, (B 12) 

(0) - @O) 

and, if we substitute this into the second equation in (B 8) and multiply by I, we 
$I2 - R r ;  
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which after the necessary aIgebra is 

Hence the dispersion relation obeyed by $R is 
($,[m"$: + $;I + P I  - $ X I @ )  = 0. 

The dispersion relation for the gravity modes is obtained much more simply. 

(B 15) Let 

substitute into the equations of motion and expand $* in powers of N-l .  The 
lowest-order equation is 

w * 7  v*7 C*) = $*exp~iW*L 

["if ;: f;]$f) = 0, (B 16) 
m2$x m"9, 

$1[$4 -f2 -m"$Z + $ 3 1 9  

- $i* = -I- [m2($: + 4;) +f214. 

where $ is $*, and for $2) not to be zero the matrix must be singular. Its deter- 
minant is 

and the case $t = 0 has already been incorporated in the Rossby mode. Conse- 

(B 17) quently, $* obeys 

The ray paths for the different modes can be obtained by quadrature, and are 
qualitatively similar to those obtained through use of the P-plane approximation. 
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